ASYMPTOTIC. REPRESENTATION OF THE SOLUTION OF THE FIRST BOUNDARY-VALUE
 PROBLEM FOR THE HEAT-CONDUCTION EQUATION WITH A MOVING BOUNDARY

A. P. Doroshenko UDC 517.9

We obtain an asymptotic solution of the first boundary-value problem for the heat-
conduction equation in a region with a moving boundary, which initially may degen-
erate to a point.

1. Statement of the Problem

We consider the problem of finding in the region G[0 < t < T, 0 < x < a(t)] a solution
of the heat-conduction equation

ou Fu
CR ®

satisfying the boundary conditions
w(+0; 0 =@ u@®) —0, 1) =1p. | (2)

We assume that the function a(t), which describes the motion of the boundary,. is positive,

monotonically increasing, differentiable for t > 0, and vanishes at the point t = 0 only.
We assume the functions ¢(t) and Y (t) are continuous.

We seek a solution of the problem (1), (2) in the form of a sum of thermal potentials
of a double layer (see [1]),

u(x, ) = Wylv(@ + W@, ‘ (3)
where ’
. 3 -
_ 1 x . (%)
Volv (o)l = 2aVn J. ¢ — " exp [ 402 (t — 7) ]V(T)dr’
. 0 .
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_ * x —al(1) . x — a @)y /

Wikl = o V 5 — exp[ D T }u(_r)dr- )

In order that the solution (3)-(5) satisfy the boundary conditions (2) the unknown demnsities
v(t) and p(t) must be solutions of the system of integral equations considered in [2, 3].

For golvability of this system of integral equations we assume that v(t) = O(k;tB‘), u(t) =
0(kt®), where Bi, B > —1; ki, and k are nonzero constants.

2. Asymptotic Behavior of the Thermal Potentials

We consider a function F(t) to belong to the class Ms(k) if

— =k, k= const==0;
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also, we have F(t) € Mw, if lim F@ =0 for arbitrary 8.

{0 #
THEOREM, If u(t) € Mg(k), v(t) € Mg, (k;), where 8, 8, > —1, and a(t) € M (c), v > 1/2,
then: 1) Wlu(t)] € Mpg(—k), 2) Wolv()] € Mg, (ky).

To prove the first part of the theorem we represent the function p(t) in the form
p (t) = ktﬁ + M (t)) where Ky (t == 0 (tB).
Then »
Wip@l = Wik + W i (@) | | 6)

Let us estimate the first term on the right side of Eq. (6). To simplify the discussion we
take g(t) = ctY. We transform the expression W[kTB] to the form

8
Wikt = 2 1), . %)
Va

. ﬁ f“ 9 2\B .
I(w)sj[ﬁ——c(l—wq )v](l———%—) exp {—zg’x_‘
# z -

where

Since v > 1/2, it follows that w - 0 as t -+ 0. We now show that

lim /(@) = — re (8)
@0 2

To do this, we write I{w) as a sum: I(w) = I,(w) + I,{w). Each of the functions I,{(w) and
I.(w) may be expressed in terms of an integral similar to the integral for determining I(w).
For the integral I,(w) the region of integration is the interval [w, sw]; for the integral
Iz(w) it is the interval (sw, +»), where s is a fixed quantity with s > 1.

The following estimate is valid:

o

3 3 1

11 (@) < 255 f(l—mf‘dxx»—i“—“——(u——‘—)”,
1

2 26 +1) s

52

whence it follows that

lim I, (@) = 0. ' (9)
=0 :
2
We choose the parameter s so that when z € [sw, ») the expression [6__5( 1._.f&_)v} <0,
: : 2
. , g o ef\? , o . ' .
i.e., the point z at which [6_wc(1—-~;—) } vanishes is located inside the interval [w, sw].
Z

For each interior point x[0 < x < o(t)] there exist fixed quantities s and b, such that 6 =
x/tY < ¢ [1 - (1/s%)]Y ~ b, where s > 1, b > 0. With s chosen in this way. the second term
I.(w») has the estimate

()] < (c—8) j exp (— 2%%) dz = _(C_:%_Vi for B >0,

0

|, )] < (¢ ma)( 1 ‘”:T}s j exp (— 26%) dz —

—8 V= B
=iV (o) w —1<p<o
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Thus, the integral I.(w) converges uniformly with respect to the parameter w. From this it
follows that

lim I,(0) = — X"
-0 .2
From the relations (9) and (10) we obtain the result (8). From the formulas (7) and (8) it

follows that W[ktP] has the asymptotic property
Wikl € Mg(—k) for B>—1.

Since UI(t) = 0(tB) and W[ktB] € My(—k), it follows that W[ui(T)] =,0(t8); therefore, the
order of the thermal potential W[ u%r)] is determined by the order of theintegral.W[kTB],
i.e., Wlu(t)] E M (k) for B > —1, which is what we wished to prove.

(10)

The second part of the theorem is proved in a similar way. The theorem holds even in
the case when a(t) is an arbitrary function belonging to the class M, (c), i.e., alt) = ctY +
a,(t), where a,(t) = 0(ctY).

3. Asymptotic Expansion of the Thermal Potential Wo[kTB]

An asymptotic expansion of the function f(t) is given by the equation

fOy = "+ 00), | - an
n=0 .
where
n (m)
' nl 40 dt -0 ¢
for arbitrary A and m = 0, 1, 2, .... We consider
¢
W, [kf} = b 5 L exp ———fz———]rﬁdr, where p>—1,
2V t — 1)* 4a®(t — 7)
: 0
and we find its asymptotic expansion as t + + 0. Another integral representation of the
thermal potential is :
okt®
W[k“I—T—J( 8), (13)
where .
1
1 ¢ ®d ) ‘ ®%?
I (0, §) = — H, —_— exp (— dy,
o = | () e (- 5
0
x A
6=, o =————, H () =2x
7 » 1 (%)
Since y > 1/2, then w + 0 as t >~ + 0. We first construct an asymptotic power series for
the function Io(w, 8) as w -~ 0. To do this, it is necessary, according to the relations
(11) and (12), to find
' fim 0@ 8 0 1,9, .. (14)
w0 amn
We can show that
lim/, (o, 8 = 2“ s (15)
w0

and that the n-th derivative is given by the equation
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. o \P
Il 8 E 2" ( - ) H,,, 62 exp (— 82 dz, (16)

dn" 2@"

where Hp(x) is a Hermite polynomial. To determine the limit (14) we break the integral on
the right side of Eq. (16) into two integrals (additivity property), taking the first of
them over the interval [w, sw] and the second over the interval (sw, =), and we write

3", (@, )

0D — 1P, ) + 1P, 9. an

The auxiliary parameter s, introduced above, must be larger than one. In Iél)(w, 8) we make
the substitution w/z = y and then let w - 0. We obtain

7 ! ]
%, = lim I (0, 8 = (— 1y* Fra 9 j =5 4
-0 2
1/s
Since Hapy (0) = 0 and Hap(0) = (—1)™(2m)!/m!, it follows that

0 for n=2m,

Xn == 1 _ (18) '
(— l)m-H gm—l @m — Dl §2m—t ,Y (1— yz)sfymdy for n=92m—1.
1/s
We now find the limit of the second term Iéz)(w, §) as w > 0. Obviously,
. 7 ; n—1 ©’ - 1 T —1 2
lim [ 6 § 2 Hn+1(6z) exp(—289) | 1 — Yy dz =5 vi—lH (v exp (—v)dv =0, n>1..
-0 ’
© se o
Applying 1'Hospital's rule, we have for n = 2m —
O = lim I (@, 8) = 2" Y2 BB —1 ... p—(m—Dl, m>1
for n odd we have
m it @2m— S — 1
oz = lim 151 0, 8) = (— 1" 2" 6™ ZQk 2 it ”( S )><
ny
XS?r/z-—?k—{-l (2m 9 l)” _:_ (___ l)m—)—l (26)2:11—-3 3‘ (D(()m) (y2) d_l/, (19)

0

where 11! = (—=1)!! = 1; ®o(x) = (1 — x)

On the basis of the relations (11), (12), (15), and (17) the asymptotic expansion for
Io{(w, S8) assumes the form

— w 0o x
I (@, 8) ~ 1% E Y sz—l 4 Kom-1 2m=1
OO Y T T N e 0

From the formulas (18) and (19) it is evident that each of sz—i and Ozp-: depends on
the auxiliary parameter s; however, their sum (UZm_1 + sz.1) is independent of s, since

d
(GZm—l + x2m-l) = 0.
ds

We have obtained estimates for the coefficients 0zy, T2p-1, and X2p-1»> from which there
follows the absolute and uniform convergence of the series (20) with respect to w. We can
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therefore replace the correspondence sign in the relation (20) by an equality sign, to with-
in a term of the class M.

The asymptotic expansion of the thermal pofential Wo[kts] is found with the aid of the
relations (13) and (20).

Thus, our method has yielded an asymptotic expansion of the thermal potential W[u(t)],
where u(t) = lesl, By > —1.

NOTATION

u, temperature; aq, thermal diffusivity; t, time; x, space coordinate; o(t), boundary
motion law; @(t), ¥(t), temperature distributions at the boundary; Wo[v(t)], Wln(r)], therm-
al potentials of a double layer vw(t), u(t), densities of thermal potentials; H,(x), Hermite
polynomials.
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