
ASYMPTOTIC REPRESENTATION OF THE SOLUTION OF THE FIRST BOUNDARY-VALUE 

PROBLEM FOR THE HEAT-CONDUCTION EQUATION WITH A MOVING BOUNDARY 

A. P. Doroshenko UDC 517.9 

We obtain an asymptotic solution of the first boundary-value problem for the heat- 
conduction equation in a region with a moving boundary, which initially may degen- 
erate to a point. 

I. Statement of the Problem 

We consider the problem of finding in the region G[0 < t < T, 0 < x < a(t)] a solution 
of the heat-conduction equation 

Ou _ a2 02u ( 1 )  
Ot a ~  

satisfying the boundary conditions 

u ( q -  O; l) = ~( l ) ,  u ( ~ ( i )  - -  O, t) = ~( l ) .  ( 2 )  

We assume that the function ~(t), which describes the motion of the boundary, is positive, 
monotonically increasing, differentiable for t > O, and vanishes at the point t = 0 only. 
We assume the functions ~(t) and ~(t) are continuous. 

We seek a solution of the problem (i), (2) in the form of a sum of thermal potentials 
of a double layer (see [i]), 

u (x, t) = W o [~ (~)l + W [~ (T)], ( 3 )  

where 

t x [ ] 
Wo Iv (x)] = 2 a  V-~-  (t - -  T)3/2 exp 4a  ~ (t - -  ~) v ('r) dz, 

0 

i 

W [I �9 (~)l = 2a  ]/-~- (t - -  g)a/2 4a"- (t - -  ~) l* (g) ~/~. 
0 

(4) 

(5) 

In order that the solution (3)-(5) satisfy the boundary conditions (2) the unknown densities 
v(t) and ~(t) must be solutions of the system of integral equations considered in [2, 3]. 
For solvability of this system of integral equations we assume that ~(t) = O(kLtBx), ~(t) = 
O(ktB), where BI, B > --i; k~, and k are nonzero constants. 

2 .  Asymptotic Behavior of the Thermal Potentials 

We consider a function F(t) to belong to the class MB(k) if 

�9 F ( t )  
lira - - -  k, k = cons t  ~ O; 

t~+0 /~ 
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also, we have F(t) ~ Mw, if lira F(t) _ 0 for arbitrary B. 
r 

THEOREM. If ~(t) 6 M (k), v(t) ~ MB~(k~), where B, 8~ > --i, and ~(t) ~ ~(c), y > 1/2, 
then: i) W[~(r)] ~ Ms(--k),82) Wo[v(r)] 6 MB~(k~). 

To prove the first part of the theorem we represent the function ~(t) in the form 

([) ---- klB + ~h (t), where ~x~ (t) ---- o (t~). 

Then 

1~7 ilz ( J l  = 1)7 [kzl~] -1- Fff [tz~ (~)]. (6)  

Let us estimate the first term on the right side of Eq. (6). To simplify the discussion we 
take a(t) = ct Y. We transform the expression W[kT ~] to the form 

W [kx t~] 2kt~_ I (~o), ( 7 ) 

where 

x[0c( 
7~ 

6 = -~, where 

z j](x zj 

z ~ ) } dz, 

0<6< c, ~ =--- 
tv-Jl~ 

2a 

Since y > 1/2, it follows that ~ § 0 as t § 0. We now show that 

/ . -  

l i ra  I (~)  = v ~  
O)-o 2 ( 8 )  

To do this, we write I(~) as a sum: I(~) = !x(~) + 12(~). Each of the functions 11(~) and 
I2(m) may be expressed in terms of an integral similar to the integral for determining I(~). 
For the integral Ii(~) the region of integration is the interval [m, sm]; for the integral 
I2(m) it is the interval (s~, +~), where s is a fixed quantity with s > i. 

The following estimate is valid: 

J 

l&(o)l <-=- I- 
s 2 / 

! 

whence it follows that 
l im / i  @o) -= O. (9) 
~ 0  

We choose the parameter s so that when z E [sin,-) the expression L \ j I~--c( I-- ~" ~ v ] .  z' / <0, 

( ] i . e . ,  t h e  p o i n t  z a t  w h i c h  [ 6 - - c  i - -  ~ ' v a n i s h e s  i s  l o c a t e d  i n s i d e  t h e  i n t e r v a l  s ~ ] .  
k z 2 ] 

F o r  e a c h  i n t e r i o r  p o i n t  x [ 0  < x < ~ ( t ) ]  t h e r e  e x i s t  f i x e d  q u a n t i t i e s  s and b ,  s u c h  t h a t  6 = 
x / t Y _ <  c [ i - -  ( 1 / s  2 ) ] Y -  b ,  w h e r e  s > 1,  b > 0.  Wi th  s c h o s e n  i n  t h i s  way. t h e  s e c o n d  t e r m  
12(~) has the estimate 

i 12 (~)I < (c -- 6) ? exp (-- z2O ~) dz 
(c 6) 

L; 
o 20 
0 

l~j= 
i I 2 ( t ~  I - - ~ - U ]  exp (--zZb 2) d z =  

SO) 

= 2b ~ for - - t < ~ < 0 .  

# > 0 ,  
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Thus, the integral I2(m) converges uniformly with respect to the parameter m. From this it 
follows that 

lira I S (~) - -  (10)  
~ 0  2 

From t h e  r e l a t i o n s ( 9 )  and  (10)  we o b t a i n  t h e  r e s u l t  ( 8 ) .  From t h e  f o r m u l a s  (7)  and  (8)  i t  
follows that W[kx 8] has the asymptotic property 

Since Pi(t) = 0(t B) and W[kT 8] E Ms(--k), it follows that W[~x(r)] = 0(tS); therefore, the 
order of the thermal potential W[~(T)] is determined by the Order of the integral W[k~8], 
i.e., W[p(m)] i~ MB(--k) for 8 > --i, which is what we wished to prove. 

The second part of the theorem is proved in a similar way. The theorem holds even in 
the case when ~(t) is an arbitrary function belonging to the class My(c), i.e., ~(t) = ct Y + 
~1(t), where ~1(t) = O(ctY). 

3. Asymptotic Expansion of the Thermal Potential Wo[k~ 8] 

An asymptotic expansion of the function f(t) is given by the equation 

f ( t )  = X h"tn + (p(t), (11)  
n=O 

where 

1 lira d"[  l i m -  
�9 h . -  n! t - .+o dt - - - - g - '  t-~+o 

for arbitrary I and m = 0, i, 2, .... We consider 
t 

2a V-----~ (t - -  %'.) 312 exp 
0 

and  we f i n d  i t s  a s y m p t o t i c  e x p a n s i o n  a s  t * + O. 
thermal potential is 

W o [k~~ = 2ktl~,_ I o (o, 8), 
| / ~  

~(~)(t) = 0 (12)  
t ~ 

x~ ] x I~ dT, where I~>- -1 ,  
4a '  (t -- x) ] 

Another integral representation of the 

(13) 

where 

I 0 ( o ,  8) = - -  

I ( ) (o~ 1 . " yS .H~ o6 . exp �9 dy, 
4 1 - - y  ]/~r-~--y 1 - - y  

0 

x l v- l t~ 
- -  . - -  H i (x) = 2x. 6 = t v , m = 2a ' 

Since 7 > 1/2, then m § 0 as t § + 0. 
the function Io(m, 6) as m + O. 
(ll) and (12), to find 

Jim 

We can show that 

We first construct an asymptotic power series for 
To do this, it is necessary, according to the relations 

o".oi (o, ~) (. = o, l ,  2 . . . .  ). 
ar n 

lira So(~, 8) = . 

~0 

and that the n-th derivative is given by the equation 

(14) 

(15) 
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s  (~o, ~) 
0ton z n-~ 1 - -  - Hn+ ~ (6z) exp (-- 5~z ~) dz, ( 1 6 )  =(--I) n 2ton z~-J 

r 

where Hn(x) is a Hermite polynomial. To determine the limit (14) we break the integral on 
th~ right side of Eq. (16) into two integrals (additivity property), taking the first of 
them over the interval [m, s~] and the second over the interval (s~, ~), and we write 

~176 (~ @ = g~ (o, ~) + I f  ~ (o~, ~). Or.,) n 

The auxiliary parameter s, introduced above, must be larger than one. 
the substitution ~/z = y and then let m § 0. We obtain 

I 

I a) " 6) H,~+~ (0) 6 '~ ; (I - -  g~)$ ~ = lim ~ tto, = ( - - 1 )  ~ @. 
,o~o 2 y~+~ 

1/s 

Since H2m+ ~ (0) = 0 and Ham(0) = (--l)m(2m) !/m! , it follows that 

0 for ~ = 2m, 

( - -  1) m+~ 2 '~-z (2m - -  1)H 62m-1 ; (1 - -  y~)fs/fmdg 6r 
1/s 

n = 2 m -  i .  

We now find the limit of the second term in~2)(~,r 6) as m + 0. Obviously, 

~.-,o - -  z 2 ] - -  2 ~+l(v) exp ( - - C )  dv = 0 ,  

$01 - - O o  

(17) 

In I( ~)(~, 6) we make 

(18) 

Applying l'Hospital's rule, we have for n = 2m 

%m = l i m  z ~  ( t ~  6) = 22'~-~ 1/-~-62'~ ~ ([~ - -  I) . . .  [[3 - -  (m - -  1)], m ~  1: 
~ 0  

for n odd we have 

~tZ 

k ~ l  

I 

•  2"-2k+~ (2m - -  2k - -  1)!t + ( - -  1) 'n+~ (26) 2 .... ~ [ q~m) @) @, 
0 

(19) 

x) s where i!! = (--i)!! = !; Oo(x) (i -- . 

On the basis of the relations (ii), (12), 
Io(m, 6) assumes the form 

(15), and (17) the asymptotic expansion for 

l~176 6) "~ ~ 2 a2m o~2m 2 %m-l -~- Z2m-t @ (2-~! @ (2m -- 1)! " ( 2 0 )  
/'rt ~ l  m - ~ l  

From the formulas (18) and (19) it is evident that each of X2m-1 and ~2m_I depends on 
the auxiliary parameter s; however, their sum (O2m_I + X2m_1) is independent of s, since 

d 
-- (~m-1 + ~2m-I) = 0. 
ds 

We have obtained estimates for the coefficients O2m, O2m_i , and X=m_1, from which there 
follows the absolute and uniform convergence of the series (20) with respect to to. We can 
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therefore replace the correspondence sign in the relation (20) by an equality sign, to with- 
in a term of the class M~. 

The asymptotic expansion of the thermal potential Wo[kT B] is found with the aid of the 
relations (13) and (20). 

Thus, our method has yielded an asymptotic expansion of the thermal potential W[~(T)], 
where ~(T) = kit BI, BI > --i. 

NOTATION 

u, temperature; a, thermal diffusivity; t, time; x, space coordinate; ~(t), boundary 
motion law; ~(t), ~(t), temperature distributions at the boundary; Wo[~(T)], W[~(T)], therm- 
al potentials of a double layer ~(t), ~(t), densities of thermal potentials; Hn(x) , Hermite 
polynomials. 
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